
LECTURE 1

Bessel’s Function

Mr. Dayanand Vyavahare



Bessel’s Equation

 Bessel Equation of order :

 Note that x = 0 is a regular singular point.

 Friedrich Wilhelm Bessel (1784 – 1846) studied 
disturbances in planetary motion, which led him in 1824 
to make the first systematic analysis of solutions of this 
equation.  The solutions became known as Bessel 
functions. 

 In this section, we study the following cases:
 Bessel Equations of order zero:  = 0

 Bessel Equations of order one-half:  = ½

 Bessel Equations of order one:  = 1
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Bessel Equation of Order Zero 

 The Bessel Equation of order zero is

 We assume solutions have the form

 Taking derivatives,

 Substituting these into the differential equation, we 
obtain
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Indicial Equation    

 From the previous slide,

 Rewriting,

 or

 The indicial equation is r2 = 0, and hence r1 = r2 = 0.  
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